Bacteriological Profile of Diabetic Wound Infections with Special Reference to Drug Resistance

Sabarinathan T1, Aruna Rajkumari V2, Krishnamurthy S2, Khalid Rashid3, Amar CS4, Yamini K5

ABSTRACT

Aim: A prospective study was carried out on patients with diabetic foot lesions to determine their clinical characteristics, spectrum of microbial flora and assess their comparative in vitro susceptibility to the commonly used antibiotics.

Materials and Methods: A total number of 100 cases of diabetic wound infections were screened for aerobic and anaerobic isolates. 50 non-diabetic patients with wound infection were screened for aerobic and anaerobic isolates which is taken as control.

Results and Conclusion: Out of 100 wound swabs collected from diabetic wounds, 44 samples were culture positive. From 44 cultures positive samples 48 aerobic bacteria were isolated. Among the 44 culture positive samples 40 were monomicrobial, whereas 4 of the culture positives revealed polymicrobial isolates. The incidence of diabetic wound infections were more among males and prevalence is more among the age group 40 – 69 years (mean age of incidence is 59.69 ± 9.71 years).

In the present study Pseudomonas aeruginosa was the predominant isolate followed by Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Staphylococcus epidermidis. The incidence of wound infection is more among the diabetic patients when compared to non-diabetic patients because several immune defence mechanisms are defective like decrease in leukocyte chemotaxis, phagocytosis and defective intracellular killing. In the present study Pseudomonas aeruginosa 7(20.59%) was the predominant ESBL producer, followed by Klebsiella pneumoniae 4(11.76%) and Escherichia coli 3(8.82%). Total ESBL producers in gram negative isolates was 41.18%. Metalobetalactamases production among the Pseudomonas aeruginosa was 16.67%. The results also had shown the polymicrobial nature of the diabetic wound infection.

Keywords: Diabetes, wound, MRSA, ESBL, MBL
Microbiology, Chalmeda Anand Rao Institute of Medical Sciences, Bommakal, Karimnagar for a period of one year. 100 wound swabs were collected from inpatients and out patients who are attending CAIMS General Hospital. Patients who are clinically diagnosed diabetes mellitus with wound infections are included in this study. 50 wound swabs were also collected from non-diabetic patients with wound infection, which is taken as a control group.

The wound site was first decontaminated with 70% ethyl alcohol after which the wound is washed well with sterile saline and dried. Three wound swabs are collected from the wound site under sterile precautions and transported in sterile screw caped tubes (Hi-media). One swab is for Gram’s staining, the second swab for aerobic culture and the third for anaerobic culture.

The pus swabs were cultured on Blood & Mac conkey agar and incubated at 37°C for 24 – 48 hrs. Wound swabs were inoculated on two Anaerobic Blood agar plates and incubated in GEN bags and Mc IntoschFilde’s anaerobic jar with anaerobic generators. Anaerobic condition was detected by the anaerobic indicator capsule. After incubating for 48 – 72 hours plates were observed for growth.

All organisms isolated were identified according to standard microbiological methods. Antimicrobial susceptibility of bacterial isolates was performed by Kirby Bauers disk diffusion method. The isolates were tested for drug resistance by the following methods.

Detection of MRSA

Detection of MRSA was done by Oxacillin disc (1µg) on the bacterial lawn culture of Staphylococcus aureus. After overnight incubation, the zone of inhibition was measured. An inhibition zone diameter less than or equal to 10mm indicates MRSA.³

Cefoxitin Disc Diffusion Test

All the isolates were subjected to Cefoxitin disc diffusion test using a 30 µg disc. A 0.5 McFarland standard suspension of the isolate was made and lawn culture done on MHA plate. Plates were incubated at 37 O°C for 18 h and zone diameters were measured. An inhibition zone diameter of = 19 mm was reported as Oxacillin resistant and =20 mm was considered as Oxacillin sensitive.⁴

Detection of ESBL Production

Screening for ESBL

This was done as part of the routine susceptibility testing, according to criteria recommended by the NCCLS. Two discs, Ceftazidime (30µg) and Cefotaxime (30µg), were used. An inhibition zone of < 22 mm for Ceftazidime and < 27 mm for Cefotaxime indicated that the strain probably produced ESBL.⁵

Phenotypic confirmatory test for ESBL Production:

The suspension for inoculum was prepared from 4-5 isolated colonies and turbidity was compared with 0.5 McFarland standard. Sterile cotton swab soaked in this suspension was used to make lawn culture on Mueller Hinton agar plates. Ceftazidime (30 µg) and Cefotaxime + Clavulunic acid (20 µg + 10 µg) were placed at the distance of 20mm from center to center.

Plates were incubated at 37°C overnight. A > 5mm increase in zone diameter for the antimicrobial tested in combination with Clavulunic acid versus its zone when tested alone confirmed ESBL production.⁶

Detection of Metallo Betalactamases

Imipenem resistant Pseudomonas aeruginosa isolates were further screened for MBL production by Double disc synergy test.

Imipenem-Ethylene Diamine Tetra Acetic Acid (EDTA) Double Disc Synergy Test

Test organisms were inoculated on the plates with Muller Hinton agar. An Imipenem (10 microgram) disc was placed 20mm centre to centre from blank disc containing 10 microL of 0.5M EDTA (750 microgram). Enhancement of the zone of inhibition in the area between Imipenem and the EDTA discs in comparison with the zone of inhibition on the far side of the drug was interpreted as positive.⁷

Ethics approval

The study protocol was reviewed and approved by the Institutional Ethics committee, at Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, 2015, and written informed consent form was obtained from all participants.

RESULTS

Among the 100 patients with diabetic wound infection 68(68%) were male and 32(32%) were female. The incidence of diabetic wound was more among the age group between 40 – 69 years with a mean age of about 59.69 ± 9.71 years.

Out of 100 wound swabs collected from diabetic wounds, 44 samples were culture positive. From 44 culture positive samples 48 aerobic bacteria were isolated. Among the 44 culture positive samples 40 were monomicrobial, whereas rest of the 4 culture positives revealed polymicrobial isolates.
Pseudomonas aeruginosa 18(37.50%) was the predominant isolate followed by Staphylococcus aureus 10(20.83%), Escherichia coli 9(18.75%), Klebsiellapneumoniae 7(14.58%) and Staphylococcus epidermidis 4(8.33%). No Anaerobic bacteria were isolated in the present study.

In the present study Pseudomonas aeruginosa isolates were resistant to Ciprofloxacin (88.89%), Gentamycin (83.33%), Ceftaxion (77.78%), Ceftazidime (72.22%), Carbenicillin (66.67%) and Amikacin (61.11%). Pseudomonas aeruginosa isolates were sensitive to Imipenem (72.22%), Piperacillin / tazobactam (61.11%) and Cefotaxime (44.44%).

The antibiotic sensitivity results of Staphylococcus aureus isolates showed higher level of resistance to Erythromycin (90%), Ampicillin (80%), Ciprofloxacin (70%) and Amoxicillin / clavulanic acid (60%) and Gentamycin (40%). They were sensitive to Vancomycin (100%), Linezolid (80%), Piperacillin/ tazobactam (70%) and Cefotaxime (70%).

In the present study Escherichia coli were resistant to Amoxicillin / clavulanic acid (77.78%), Ciprofloxacin (55.56%), Gentamycin (44.44%) and Cefotaxime (33.33%) and sensitive to Imipenem (77.78%), Piperacillin / tazobactam (77.78%), Ceftazidime (77.78%) and Cefepime (66.67%).

In the present study Klebsiellapneumoniae were resistant to Amoxicillin / clavulanic acid (57.14%), Ciprofloxacin (57.14%), Gentamycin (71.43%) and Cefotaxime (42.86%) and sensitive to Imipenem (100%), Piperacillin / tazobactam (85.71%), Ceftazidime (57.14%) and Cefepime (85.71%).

### Table-1 : Aerobic Gram Positive and Gram Negative Bacteria Isolated in Diabetic Wound Infection

<table>
<thead>
<tr>
<th>S.No</th>
<th>Gram positive cocci</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Staphylococcus aureus</td>
<td>10 (20.83%)</td>
</tr>
<tr>
<td>2</td>
<td>Staphylococcus epidermidis</td>
<td>4 (8.33%)</td>
</tr>
<tr>
<td>3</td>
<td>Pseudomonas aeruginosa</td>
<td>18(37.50%)</td>
</tr>
<tr>
<td>4</td>
<td>Escherichia coli</td>
<td>9 (18.75%)</td>
</tr>
<tr>
<td>5</td>
<td>Klebsiellapneumoniae</td>
<td>7 (14.58%)</td>
</tr>
<tr>
<td><strong>TOTAL ISOLATES</strong></td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

### Table-2 : Antibiotic Susceptibility Pattern of Gram Negative Isolates

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>Antibiotics</th>
<th>Kleb</th>
<th>Pseudo</th>
<th>E.coli</th>
<th>Kleb</th>
<th>Pseudo</th>
<th>E.coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amoxicillin / clavulanic acid</td>
<td>3(42.86%)</td>
<td>-</td>
<td>2(22.22%)</td>
<td>4(57.14%)</td>
<td>-</td>
<td>7(77.78%)</td>
</tr>
<tr>
<td>2</td>
<td>Amikacin</td>
<td>5(71.43%)</td>
<td>7(38.89%)</td>
<td>6(66.67%)</td>
<td>2(28.57%)</td>
<td>11(61.11%)</td>
<td>3(33.33%)</td>
</tr>
<tr>
<td>3</td>
<td>Ciprofloxacin</td>
<td>3(42.86%)</td>
<td>2(11.11%)</td>
<td>4(44.44%)</td>
<td>4(57.14%)</td>
<td>16(88.89%)</td>
<td>5(55.56%)</td>
</tr>
<tr>
<td>4</td>
<td>Cefotaxime</td>
<td>4(57.14%)</td>
<td>8(44.44%)</td>
<td>6(66.67%)</td>
<td>3(42.86%)</td>
<td>10(55.56%)</td>
<td>3(33.33%)</td>
</tr>
<tr>
<td>5</td>
<td>Ceftazidime</td>
<td>4(57.14%)</td>
<td>5(27.78%)</td>
<td>7(77.78%)</td>
<td>3(42.86%)</td>
<td>13(72.22%)</td>
<td>2(22.22%)</td>
</tr>
<tr>
<td>6</td>
<td>Ceftaxion</td>
<td>4(57.14%)</td>
<td>4(22.22%)</td>
<td>6(66.67%)</td>
<td>3(42.86%)</td>
<td>14(77.78%)</td>
<td>3(33.33%)</td>
</tr>
<tr>
<td>7</td>
<td>Cefepime</td>
<td>6(85.71%)</td>
<td>5(27.78%)</td>
<td>6(66.67%)</td>
<td>1(14.29%)</td>
<td>13(72.22%)</td>
<td>3(33.33%)</td>
</tr>
<tr>
<td>8</td>
<td>Gentamycin</td>
<td>2(28.57%)</td>
<td>3(16.67%)</td>
<td>5(55.56%)</td>
<td>5(71.43%)</td>
<td>15(83.33%)</td>
<td>4(44.44%)</td>
</tr>
<tr>
<td>9</td>
<td>Imipenem</td>
<td>7(100%)</td>
<td>13(72.22%)</td>
<td>7(77.78%)</td>
<td>0(0%)</td>
<td>5(27.78%)</td>
<td>2(22.22%)</td>
</tr>
<tr>
<td>10</td>
<td>Piperacillin / tazobactam</td>
<td>6(85.71%)</td>
<td>11(61.11%)</td>
<td>7(77.78%)</td>
<td>1(14.29%)</td>
<td>7(38.89%)</td>
<td>2(22.22%)</td>
</tr>
<tr>
<td>11</td>
<td>Carbenicillin</td>
<td>-</td>
<td>6(33.33%)</td>
<td>-</td>
<td>-</td>
<td>12(66.67%)</td>
<td>-</td>
</tr>
</tbody>
</table>

In the present study Klebsiellapneumoniae were resistant to Amoxicillin / clavulanic acid (57.14%), Ciprofloxacin (57.14%), Gentamycin (71.43%) and Cefotaxime (42.86%) and sensitive to Imipenem (100%), Piperacillin / tazobactam (85.71%), Ceftazidime (57.14%) and Cefepime (85.71%).

Figure 1 : Incidence of Mrsa

Figure 2 : Incidence of Mrcns (Staphylococcus Eiderimidis)
Incidence of methicillin resistance among gram positive isolates was found to be 35.71%. In the present study the incidence of Methicillin resistant among Staphylococcus aureus isolates was 40%. Methicillin resistance coagulase negative Staphylococcus (Staphylococcus epidermidis) was 25%.

Pseudomonas aeruginosa 7(20.59%) was found to be the predominant ESBL producer, followed by Klebsiella pneumoniae 4(11.76%) and Escherichia coli 3(8.82%). Total ESBL producers in gram negative isolates was 41.18%. Metalobetalactamases production among the Pseudomonas aeruginosa was 16.67%.

From the total 50 samples of control group (non diabetic) 11 aerobic bacteria were isolated, and the incidence of wound infections in the control group was 22% less than the test group. Staphylococcus aureus 5(45.45%) was found to be the predominant isolate followed by Pseudomonas aeruginosa 2(18.18%), Escherichia coli 2(18.18%), Klebsiellapneumoniae 1(9.09%) and Staphylococcus epidermidis 1(9.09%). No Anaerobic bacteria were isolated in the control group. Unlike the diabetic patients all the isolates were monomicrobial.

Antibiogram of the control group revealed that isolates were sensitive to multiple drugs unlike the diabetic patients. None of the isolate from the control group was MRSA, ESBL and MBL producer.

As diabetic mellitus is a metabolic disorder the isolates from the wound infections were multidrug resistant, some of them are MRSA and ESBL, MBL producers.

**DISCUSSION**

VenkataNagaraju E et al [8] reported 40% incidence of Pseudomonas aeruginosa similar to present study. Lower incidence of Pseudomonas aeruginosa were reported by Priyadarshini Shanmugam et al [9] 16%.

Farwa Rizvi et al [10] 22% and Yoga et al [11] 20% reported Staphylococcus aureus. There results are similar to our observation. Higher incidence of Staphylococcus aureus was reported by Maryam Aminiet al [19] 34.6%. Ravisekkhagedepal et al [13] reported 13.7% low incidence of Staphylococcus aureus compared to present study.
Maryam Amini et al [12] 20.2%, Shao-Hua Wang et al [14] 20% of Escherichia coli was reported. Their results were similar to our observation. Lower incidence of Escherichia coli isolates were reported by Priyadarshini Shanmugam et al [9] 14.6%. Higher incidence of Escherichia coli was reported by Girish et al [13] 22.22% than the present findings.

Rajalakshmi V et al [16] 15% reported similar incidence of Klebsiella pneumoniae compared to present study. Low polymicrobial incidence of MRSA was reported by Priyadarshini Shanmugam et al [9] 33.33%.

In the present study results of Kavita et al [18] 41.5%.

In the present study Pseudomonas aeruginosa 7(20.59%) was the predominant ESBL producer, followed by Klebsiella pneumoniae 4(11.76%) and Escherichia coli 3(8.82%). Total ESBL producers in gram negative isolates was 41.18%.

Priyadarshini Shanmugam et al [19] 37.5% and Vinita Rawat et al [20] 40% reported similar ESBL producing gram negative isolates SivaramanUmadevi et al [17] 56% reported higher incidence of ESBL producers.

In the present study Metalobetalactamases production among the Pseudomonas aeruginosa was 16.67%. Higher incidence of MBL producers was reported by Priyadarshini Shanmugam et al [19] 37%, Vinita Rawat et al [20] 37.5%.

CONCLUSION

The incidence of wound infection is more among the diabetic patients when compared to non diabetic patients. The organisms associated with diabetic wound infections were resistant to multiple drugs.

The prevalence of Multidrug resistance was alarmingly high in the diabetic patients. A detailed knowledge of the susceptibility to antimicrobial agents is necessary to facilitate the development of effective strategies to combat the growing problem of resistance especially MRSA, ESBL and MBL strains in diabetic wound infections.

By the present study causative organism was isolated with authentic antibiogram which helps judicious use of antimicrobials in the diabetic wound infections to control chronic strain and limit the acquisition of additional resistance genes in the existing strains.

CONFLICT OF INTEREST: None.

FUNDING: Nil.

REFERENCE


